Aggregation and Soft Clustering of Informetric Data
نویسندگان
چکیده
The aim of this contribution is to inspect possible applications of clustering techniques computed over a set consisting of nonincreasingly ordered vectors of possibly nonconforming lengths. Such data sets appear in the field of informetrics, where one may need to evaluate the quality of information items, e.g research papers, and their producers. In this paper we investigate the notion of cluster centers as an aggregated representation of all vectors from a given cluster and analyze them by means of aggregation operators.
منابع مشابه
A user-oriented interface for generalised informetric analysis based on applying advanced data modelling techniques
This article presents a novel user-oriented interface for generalized informetric analysis and demonstrates how informetric calculations can easily and declaratively be specified through advanced data modeling techniques. The interface is declarative and at a high level. Therefore it is easy to use, flexible, and extensible. It enables end-users to perform basic informetric ad hoc calculations ...
متن کاملA K-means-like algorithm for informetric data clustering
The K-means algorithm is one of the most often used clustering techniques. However, when it comes to discovering clusters in informetric data sets that consist of non-increasingly ordered vectors of not necessarily conforming lengths, such a method cannot be applied directly. Hence, in this paper, we propose a K-means-like algorithm to determine groups of producers that are similar not only wit...
متن کاملEIDA: An Energy-Intrusion aware Data Aggregation Technique for Wireless Sensor Networks
Energy consumption is considered as a critical issue in wireless sensor networks (WSNs). Batteries of sensor nodes have limited power supply which in turn limits services and applications that can be supported by them. An efcient solution to improve energy consumption and even trafc in WSNs is Data Aggregation (DA) that can reduce the number of transmissions. Two main challenges for DA are: (i)...
متن کاملA robust aggregation operator for multi-criteria decision-making method with bipolar fuzzy soft environment
Molodtsov initiated soft set theory that provided a general mathematicalframework for handling with uncertainties in which we encounter the data by affix parameterized factor during the information analysis as differentiated to fuzzy as well as bipolar fuzzy set theory.The main object of this paper is to lay a foundation for providing a new application of bipolar fuzzy soft tool in ...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کامل